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Abstract

Coherent mixed states (or thermal coherent states) associated with the

displaced harmonic oscillator at finite temperature, are introduced as a

"random" (or "thermal" or "noisy") basis in Hilbert space. A resolution of

the identity for these states is proved and used to generalise the usual

coherent state formalism for the finite temperature case. The Bargmann

representation of an operator is introduced and its relation to the P and Q

representations, is studied. Generalised P and Q representations for the

finite temperature case are also considered and several interesting

relations among them are derived.

i. Introduction

Coherent states have played an important role in various areas of

physics. They provide a non-orthonormal, over-complete basis in the Hilbert

space, which however is very useful in many problems. In spite of the
non-orthonormal nature of this basis, the resolution of the identity makes

it practically usable in the sense that it can be used for the expansion of

an arbitrary state in the coherent state basis.

In a previous publication [i] we have considered a generalisation of

the ordinary coherent states into the so-called "coherent mixed states" or

"thermal coherent states" T_ey describe displaced harmonic oscillators at

finite temperature T; or alternatively, mixtures of coherent states in

thermal noise [2]. In contrast to the various types of coherent states

considered in the literature which are pure states, our coherent mixed

states are, as the name indicates, mixed states in general; and they are

pure states only in the special case of zero temperature. They can be

considered as a "noisy" or "random" basis in the Hilbert space. We prove

that there exists a resolution of the identity for these states, and this

makes possible an expansion of an arbitrary state in the coherent mixed

state basis. The Q and P representations which are usually defined in terms

of ordinary coherent states are generalised within our formalism.

The purpose of this paper is to expand our previous work and express it

within the Bargmann representation [3]. This representation makes possible
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the exploitation of the powerful theory of analytic functions in the complex

plane, within a quantum mechanical context. In section 2, we define the

coherent mixed states in the Bargmann representation. For example, we

derive a transformation which connects the Bargmann representation with the

usual x- an p- representations. We also explain how an operator can be

expressed in a differential form or in an integral form (i.e. as the kernel

of an integral) in the Bargmann formalism. In section 3 we explain how our

mixed coherent states can be considered as a "random" or "noisy" basis in

the Hilbert space. In section 4 we explain the relation between the

Bargmann representation of on operator and its P, Q, w (Wigner)

representations. In section 5 we introduce generalised (finite temperature)

P and Q representations and examine various relations among them. Known

results [4, 5, 6] on P and Q representations are in this section generalised

for the finite temperature P and Q representations. We conclude in section
6 with a discussion of our results.

2. Displaced oscillator at finite temperature in the Bargmann

representation

We consider the Glauber coherent states

_ Iz> = D (z) I0> =
] _ N -h

exp - h Izl2 I z (N!) IN>
N-0

D (z) - exp [za + z a]; [a,a +] = I
(i)

<ZlZ'> - exp [- Izl=

We introduce the Bargmann analytic representation by considering
arbitrary state

an

-½ (a+)Nl0 >

XIfN 12
N-O

-1
(2)

<f*l - If* + - Z fN<NI
N-O

and representing it with the analytical function

If>----> fB (z) - FB (If>;z - exp hlzl2 <z*If> -N_0fN.zN(N!) -h
(3)

Using the resolution of the identity

Id_z 'z> <z' - I; d2z -d(Rez),

i

d (Imz) - -- dzdz

2i
(4)
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we easily prove

expressed as

that the scalar product of two states If>, Ig>

d2z

. 2)
(z) gB (z) exp (-Izl

can be

(5)

The creation and annihilation operators are represented as

d

a_> _ (6)
dz

+
a--> z

As an example we consider the coherent states IA> and the number

eigenstates IN> which in the Bargmann representation are represented by the

analytical functions:

IA>------> FB (IA>;z) = exp [- ½ IAI2 + Az]

N -_

IN>------> FB (IN>;z) - z (N!)

We next introduce transformations that connect the

representation with the usual position and momentum representations

here with the indices x,p correspondingly

fx (ZR) - _'3/4 exp [- ½ ZR2] _dZl exp (-z12) fB (2_z)

(7)

Bargmann
denoted

(s)

f ) _ -3/4 [ z12] _ .ZR2 )P (z I exp - h dz R exp ( fB (2_z*) (9)

where zR - Rez and zT - Imz. The proof is based, on equ (3) and the integral
representations of t_e Hermite Polynomials:

2N_ "h F(x + it) N exp (-t 2) dt (i0)
HN (x)

Jo

An operator e

e - Y.eNMIN>_I

can be represented by the analytic function of two variables:

(Ii)

8---->8 B (Zl,Z2#) - * {B (e;Zl,Z 2 ) -exp hlZ112 + hlz212/ * .J

197



[- _ 8NMZl N (z2*) M (N!) (M!)

N,M

(12)

We refer to this as the B-representation. It provides an "integral"

representation of an operator in the Bargmann formalism. The operator is

here represented by a kernel of an integral. The action of this operator on

the (arbitrary) state If> of equ (2) can be described by the integral

I 2)d2z,81f>------> B (e;Zl,Z') fB (z') exp (-Iz'l (13)

The B representation of the product of two operators is given by

B (8182;z l,z 2 ) - B (81
* * 2) d2z3

;Zl,Z 3 ) B (e2;z3,z 2 ) exp ( -Iz31 (14)

The creation and annihilation operators (already given in equ (6))

here represented by the functions:

B (a;zl,z2*) - z2 exp (ZlZ 2 )

B (a+;zl,z2 *) - z I exp (ZlZ 2 )

The

Indeed

are

(15)

representations of equ (15) are consistent with these of equ (6).

I * * 2) d2z2 dz 2 exp (ZlZ 2 ) exp (-Iz21 f (z2) .... fB(Zl)

dz I

I * 2) d2z2zI exp (ZlZ 2 ) exp (-Iz21 f (z2) ZlfB(z I)

(16)

Both equations can be proved using the fact that f(z) is a holomorphlc

function therefore

I I f(z2) dz 2 - fB(Zl)

2_i z2-z I

(17)

Where the integral _s taken around some suitable contour enclosing the point

zI in an anticlockw_se direction. Note that the trace of an operltor can be
expressed as

2z .
Tr(e) - exp (-Izl 2) B (e;z,z) (18)

and that the trace of the product of two operators can be expressed as:
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I .Tr (ele 2) - B (el;Zl,Z2)
* 2 2)

B (O2;z2,zl) exp (-Izll -Iz21

d2z I d2z2

(19)

For later use we mention that the unit operator I is represented by the

function

B (l;Zl,Z2*) - exp (ZlZ 2 ) (20)

and that the displacement operator is represented by the function

* -_IAI2- A z2 + ZlA + ZlZ 2 (21)B (D(A);Zl,Z 2 ) - exp

A density matrix p with eigenvalues p., elgenstates le(N)> and

elements with respect to the number eigens_ates PNM

P - E PN le(N)> <e(N) l - EPNMIN> <'HI

0_ pN_._l (22)

PN - i

can be represented by the analytical function of two variables (equ (12)):

matrix

. (2 2]<zl.z2.pB(Zl,Z2 ) - exp _lzll + _lz21 P >

1" r- _ PN e(N)B (Zl) (N) (z2) _" PNM (zl)N(z2*)M[(N!)(M!)J'h
e B j -

(23)

The

density matrix (kB - h - _ - I):

p(A;B) -D(A) txP [-Ba+a]D + (A) (1-e "B)

displaced oscillator of finite temperature is represented by the

-exp [-B(a+-A*)(a- A)] (i - e -B )

where B is the inverse temperature.

(T-->o)

We can easily prove that in limit B--> _

tim p (^;B)- Ix _1

The Bargmann representation of this density matrix can be found

equ (23). We prove:

PB(A;B;Zl,Z2*) - (I - e "B)

(25)

from
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X exp [(i e "B) (A'z2* + ZlA - IAI 2) + ZlZ2*e'_ ]

(26)

3. Mixed states as "noisy bases" in Hilbert space;

The simplest type of basis in a Hllbert space is the orthonormal (fUN >}
for which

" 157 (27)

_N_M - 6NM_N (28)

_N - I (29)

The _N are orthonormal projection operators. Equ (29) is important for two
reasons. First, it is a proof of the completeness of the basis. And

second, it can be used to expand an arbitrary state Is> as:

Is> - lSNlUN> (30)

sN - <UNlS> (31)

This second point is very important from a practical point of view, because

for some bases we might have an abstract proof of completeness, but not a

resolution of the identity llke (29); and then we do not know how to use

this basis, in practice.

Another type of basis is provided by the coherent states, which is

overcomplete and non-orthonormal:

- IA><All (32)

2
(A) - x(A) (33)

(34)

The z(A) are still projection operators (describing pure states); but in

this case they are non-orthonormal. And yet, the resolution of the identity

(34) allows us to express an arbitrary state Is> as

[s> ;d;A s(A) ,A> (35)

s(A) - <Als> (36)

Our proposal in this and in our previous work [I] is to use a set of

mixed states as a basis in a Hilbert space. A mixed state described by a
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density matrix p with eigenstates [eN> and eigenvalues PN

P -N__0PN[eN > <eN[,
(37)

oo

PN - I; 0-<PNSI,
N-O

(38)

represents a set of states {[eN>) with a probability distribution (pN }.

Therefore the idea of using mi_ed states as a basis replaces the "fixed"

veetors which are usually used, in a basis with "noisy vectors" (i.e. "random

vectors").

The basis used in this paper is the set of all density matrices p(A; 8)

of equ (24) for all complex values A and fixed (but arbitrary) value of 8.

In this case equ (37) becomes

p (A;8) - Z PN (8) IN;A> <N;A[ (39)

[N;A> - D(A)[N> (4O)

PN (8) - [i exp (-8)] exp (-SN)
(41)

We have proved in [I] that the p(A;8 ) obey the resolution of the identity

dlA p (A;8) - I
(42)

This is a significant relation for our purposes because it can be

expand an arbitrary state Is> as

Is> -

used to

p (A,8)[s> (43)

The density matrices p(A;8) have been expressed in the

representation in equ (26). The resolution of the identity (42)

written in the Bargmann representation as:

I . d2A .PB (A;8;Zl'Z2)-- - exp (ZlZ 2 )
ff

Bargmann

can be

(44)

where as explained in equ (18) the right hand side is the unit operator in

this formalism.

4. B- representation and its relationship to P, Q, W representations;

There has been a lot of discussion in the literature (reviewed in [4,

5, 6]) on the Q, P and Weyl representations and the relationships among

them. The purpose of this section is to examine the relationship of the
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B-representation with the others; and also to present some basic material

which will be used in the next section, where all these quantities will be

generalised into their finite temperature equivalents.

The Q and P representations of an operator e are defined as

Q (S;A>- <AIoI (45)

I d2A
O - P(O;A)x(A) (46)

where the x(A) have been defined in (32).

The Q and P-representatlons are related

representation of equ (12) as follows:

with the Bargmann

[ *]Q(e;z) - exp (-[zl2)B(e;z ,z) (47)

2)j'd__ * . . ]
P(e;A) - exp (IAI B(e; - z ,z) exp (Az A z) (48)

Equ (47) can be easily proved with the use of.the definition (12_; equ (48)

is similar to the result given by Mehta [7].

We introduce the notation f(w) for the two-dlmensional Fourier transform of

the function f(z) defined as:

f(w) - Id2z exp [i(WRZR + WlZl)]f(z)
(49)

where the indices R,I indicate the real and imaginary parts correspondingly.

We can prove the following relations that express the Bargmann

representation in terms of the P and Q representations:

* [ * * 2 d2z

B(e;Zl,Z 2 ) - jP(e;z) exp (zz I + z z 2 Izl) (50)

. ZlZ2*[d2w _ [ . .

B(e_;Zl,Z 2 ) - e J(__y_)2q (e;w) exp [- ih(wz I + w z2 )
(51)

We next use the relation

f (A ,A) k exp (-klA - BI2) -exp AB f (B*,B)
I

02

AB - 4 --. ,k>O
8BSB

(52)
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which can be proved with a Fourier transform of both sides. _B is the
Laplaclan in a two-dlmenslonal space.

Wenext consider the Wigner function corresponding to an operator 0.

eW (A) - Tr [SD(A)]

It is known [4] that

9 Tr D+(A)e D(A) - -- OW (-A) D (A)

For a density matrix p the definition (53) leads

expression

(53)

(54)

to the more familiar

It is convenient for later purposes to make a trivial change of variables

from A to hiw and denote the resulting function by W(e;w)

(e;w) - _Tr [OD(½iw)] - _eW(hlw )
(56)

We shall also use its Fourier transform W(z;8) defined as the inverse of the

transform given in equ (36). Using equs (54), (21) we prove:

[ ** ]B(O;Zl,Z2* ) - W (O;2iA) exp -hlAl 2 + Az I A z 2 + ZlZ 2 (57)

Using equs (19), (21), (56) we prove the inverse of this transform:

i I d2z2 *
(O;2iA) - - d2Zl B (8;Zl,Z 2 )

[ IAI 2 : ,I 2 12 * *
:- Iz 1 - Iz 2 - A z iexp

t + z2A + Z2Zl* ]
(58)

5. Generalized P and Q representations for finite temperature

The formalism of P and Q representations is based on coherent states.

Although they form an overcomplete basis, it is the fact that a resolution

of the identity (equ(4)) is available, that makes them practically usable.

The density matrices p(A;_) provide a generalization of the coherent states

and they also obey the resolution of the identity (42). It seems therefore

natural to define generalized P and Q representations based on p(A;B). More
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specifically we introduce:

[I
Q (e;A;fl) - Tr Ip(A;fl)e_

e- ¢ (A;fl) e (e;A;_)

(59)

(60)

It is clear from equ (25) that in the limit T_>0 (_>_) they reduce to

the ordinary Q and P representations.

From equs (59)i, (60) we easily get

Q (O;A;fl) - P(O,B;fl') Tr p(B,fl') p (A,fl) (61)

We next show

Tr p(B,fl') p (A,fl) -2 g(fl,fl') exp -2 IA-BI 2

g(_,_')

(62)

where

g(fl,fl').-
slnh [h (fl + fl')]

sinh (_ fl) sinh (h fl')

(63)

Combining equs (61), (62), (63) and taking into account equ (52) we get:

[i l
Q (O;z;fl) - exp 18 g (fl'fl') Az/ P (O;z;fl')

Fourier transform of this equation gives

_ (e;w;_) -exp - _ g (_,_') Iwl 2 _ (e;w;_')

(64)

(65)

In the special case fl - fl' equs (63), (64), (65) give

g (fl,fl) - 2 coth (_fl) (66)

Q (O.z;fl) - exp [k coth (hfl) A ] P (O;z'fl),z '
(67)

Q (O;w;fl)-exp I-t( coth (hfl)lw12] P (O;w;fl)
(68)

In the zero temperature limit

llm g (fl,fl) - 2 (69)
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and equs (67), (68) reduce to

O (e;z) - ex_ (k Az ) P (e;z)
(70)

(8;w) - exp (-k JwJ 2) _ (e;w) (71)

Equs (70), (71) are known in the literature [4, 5, 6]. Our contribution is

to generalize them into equs (64), (65).

We next

introduced in the previous section.

prove

d2B
- -- 2 _ (e;B)

Q (e;A;fl) J(2_)
exp

relate the P and Q representations to

Using equs (54),

1 12 ]- - JB coth (h_)

8

the Wigner function

(55), (59), (60) we

-- 2w • IBl2
P -J(2=) (O,B) exp coth (h_) x

(72)

x exp
- i(ARB R + AIB I)

= exp - -- coth (hfl)A W (O;A)

8
(73)

Note that from equs (72), (73) we can derive equ (67). The

expressions (72), (73) are identical, apart from a minus sign. In this

sense the Q-representation can be considered as the analytic continuation of

the P-representatlon at "negative temperatures" In the zero temperature

limit (_-->_) the above equations reduce to

Q (O;A) - exp [_ AA] W (O;A)
(74)

P (O;A) - exp - --A W (O;A)

8
(75)

6. Conclusions

Generalizations of the original coherent states are usually based on

replacing the Weyl group with another one (e.g. SU(2), SU(I,I) etc.). All

these coherent states are pure states. In this paper and in ref [i] we have

studied coherent mixed states associated with the displaced oscillator at

finite temperature. We have shown that these states can be viewed as

consisting a "random" (or "noisy" or "thermal") basis in the Hilbert Space.

The fact that we were able to prove a resolution of the identity for these

states, makes them practically usable.

All the calculations in this paper have been presented in the Bargmann
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representation. Relations between the Bargmann and the P, Q representations

of an operator have been studied. A generalization of the P and Q

representations for the finite temperature case, has been proposed and

various relations among them have been studied.

From a practical point of view our coherent mixed states can be used

for the description of coherent signals in thermal noise. There is a lot of

activity in this area [8] and our work provides theoretical support to such

studies.
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